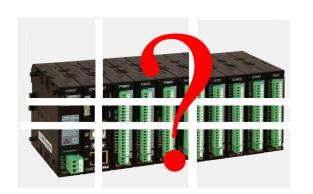
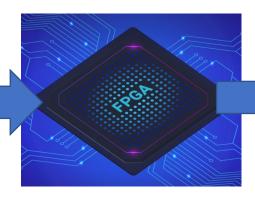
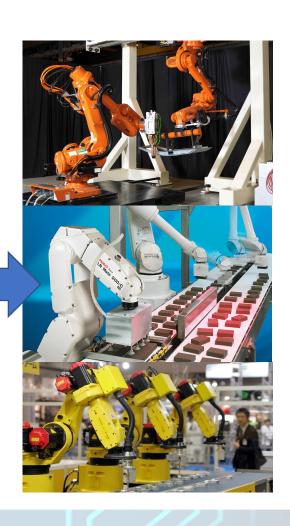
FPGA-Systems 2024.1

Применение плат FPGA в задачах промышленной автоматизации


Хлуденьков Александр


Применение плат FPGA в задачах промышленной автоматизации





производством?

Сравнение рабочих параметров

Сравним! VS

- 1) Порты ввода-вывода (DI, DO, AI, AO).
- 2) Интерфейсы и протоколы.
- 3) Мощность процессора (MHz и разрядность).
- 4) Среда разработки.

- 1) Имеются, настраиваются.
- 2) Реализуются.
- 3) MHz и LUT.
- 4) HDL.

Интерфейсы и протоколы

	Тип	Рабочее напряжение	Скорость	Размер программы	Плата
I2C	Master- Slave	3,3 B	100 кб/сек	1 кБ	Cyclone III EP3C10E144C8
SPI	Master- Slave	3,3 B	50 Мб/сек	2 кБ	Max II EPM240T100C5N
UART		3,3 B	921 кб/сек	2 кБ	Max II EPM240T100C5N
Modbus (поверх RS- 485)	Master- Slave	-7 В до +12 В	115 кб/сек	5 кБ	Cyclone IV EP4CE6
EtherCat	Master- Slave		100 Мбит/с		Stratix 10

Среда разработки и исполнения

VS

МЭК 61131-3	Тип среды разработки	HDL
IL	Текстовый	Языки HDL
CFC	Графический	Схемы FB
FBD	Графический	Схемы FB
ST	Текстовый	Языки HDL
SFC	Графический	HLS

Классы ПЛК

Класс	Уровень	ПЛК	FPGA
PLC (Programmable Logic Controller)	Начальный	ОВЕН ПР-200	DE-10 Lite
PAC (Programmable Automation Controller)	Средний	Siemens S7-1500	DE2-115
IPC (Industrial PC)	Высокий	Cypcut-8000	Stratix-10

DE-10 Lite vs OBEH ΠΡ-200

DE-10Lite.

• Кристалл: MAX10 10M50DAF484C7G

• Тактовая частота: 50 МГц

• Количество элементов: 50 000

• PIN: 2x20

• IDE: Quartus

ПР-200.

Процессор: STM-32

• Тактовая частота: 72 МГц

• ОЗУ: 32 кБ

• Дискретные входы: 8

• Интерфейс RS-485 (до 2 шт.)

• IDE: визуальная Owen Logic

DE2-115 vs Siemens S7-1500

DE2-115.

- Кристалл: Cyclone IV EP4CE115
- Тактовая частота: до 200 МГц
- Количество элементов: 114 480
- IDE: Quartus.

Siemens S7-1500.

- Процессор: 6ES7518-4AP00-0AB0
- Тактовая частота: 1,5 ГГц
- ОЗУ: 2 МБ
- IDE: визуальная Simatic Step 7.

Stratix-10 vs Cypcut-8000

Stratix-10.

• Кристалл: Stratix-10

• Тактовая частота: 1 ГГц

• Количество элементов: 2,8 млн

• IDE: Altera SDK.

Cypcut-8000.

• Процессор: Intel i5

• Тактовая частота: 4 ГГц

• ОЗУ: 8 ГБ

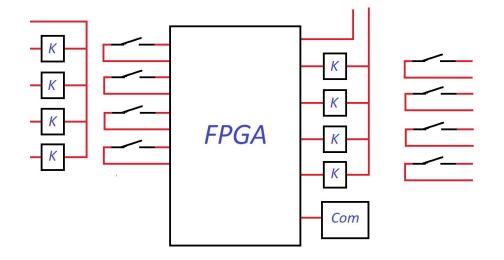
• IDE: встроенная Cypcut

Типовые задачи автоматизации

Уровень задачи	Пример задачи	FPGA
Начальный	Управление лифтом	DE-10Lite
Средний	Управление фрезерным станком с ЧПУ	DE2-115
Высокий	Робототехническая линия	Stratix-10

Процесс управления лифтом

Количество этажей	Общая концепция
До 5	Комбинационная схема
6-10	Конечный автомат
Свыше 10	Софт-процессор



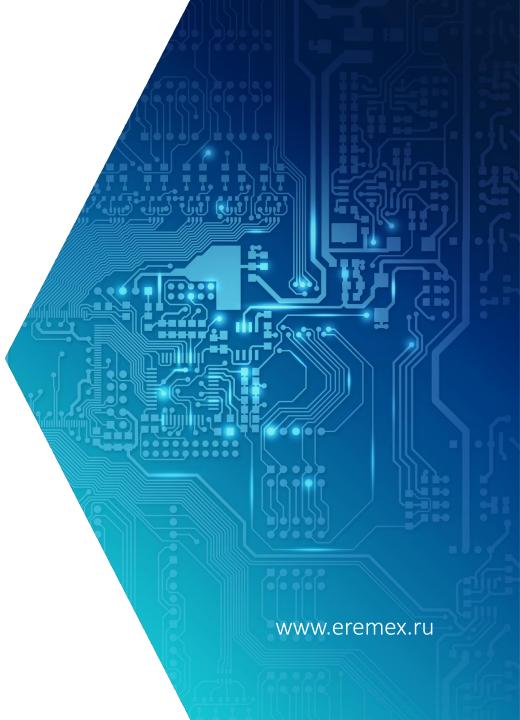
Разработка контроллера на FPGA

Необходимо реализовать:

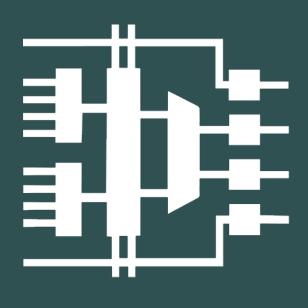
- аппаратная часть: защищенные порты ввода-вывода, увеличить количество портов.
- программная часть: среда разработки, библиотека макроблоков.

Заключение

Преимущество FPGA	
Где применять	Высокоскоростные устройства с большим количеством интерфейсов
Что для этого нужно: аппаратная часть	Усилить порты ввода вывода
Что для этого нужно: программная часть	Реализовать макроязык проектирования



Генеральный партнёр конференции FPGA-Systems 2024.1



Первая современная отечественная САПР, реализующая сквозной цикл проектирования печатных плат

Где найти FPGA / RTL / Verification комьюнити?

FPGA-Systems.ru

Сайт комьюнити

FPGA-Systems Magazine (FSM)

Первый журнал о программируемой логике

@fpgasystems

Телеграм чат

admin@fpga-systems.ru

Электронная почта

Youtube.com/c/fpgasystems

Youtube канал